โปรดอัพเดตเบราว์เซอร์

เบราว์เซอร์ที่คุณใช้เป็นเวอร์ชันเก่าซึ่งไม่สามารถใช้บริการของเราได้ เราขอแนะนำให้อัพเดตเบราว์เซอร์เพื่อการใช้งานที่ดีที่สุด

AI เสริมศักยภาพทางธุรกิจ อุตสาหกรรมการผลิตยุค 4.0

ประชาชาติธุรกิจ

เผยแพร่ 17 ม.ค. 2562 เวลา 04.57 น.

คอลัมน์ มองข้ามชอต

โดย นันทพงศ์ พันทวีศักดิ์ Economic Intelligence Center (EIC) ธ.ไทยพาณิชย์

การพัฒนาปัญญาประดิษฐ์ หรือ artificial intelligence (AI) สำหรับอุตสาหกรรมการผลิต เป็นอีกหนึ่งเทคโนโลยีสำคัญที่ถูกกล่าวถึงในยุคของการพัฒนาอุตสาหกรรม 4.0 โดยในอุตสาหกรรมการผลิตระดับโลกที่มีการนำ AI เข้ามาใช้ในกระบวนการผลิต อย่าง Siemens, General Electric, Hitachi หรือ Boeing ล้วนมีเป้าหมายสำคัญเพื่อเพิ่มประสิทธิภาพการผลิตลดต้นทุน ยืดอายุการใช้งานของเครื่องจักร บริหารจัดการห่วงโซ่อุปทาน ควบคุมคุณภาพและความปลอดภัย

ทั้งนี้ ปัจจุบันการใช้ AI ในอุตสาหกรรมการผลิตเชิงพาณิชย์ทั่วโลกยังอยู่ในขั้นต้น หรือที่เรียกว่า “artificial narrow intelligence” ซึ่งมุ่งพัฒนาให้ AI มีความชำนาญเฉพาะด้าน ตัวอย่างเช่น การตรวจจับและวิเคราะห์คุณภาพสินค้า หรือการตรวจสอบการทำงานของเครื่องจักรเพื่อพยากรณ์การซ่อมบำรุงล่วงหน้า ซึ่งการนำ AI มาปรับใช้ควบคู่กับเทคโนโลยีในกระบวนการผลิต มีเทคโนโลยี 4 อย่างที่น่าสนใจ

เทคโนโลยีแรก คือ การให้ AI วิเคราะห์และประเมินโอกาสที่จะเกิดปัญหาหรือความเสียหายของเครื่องจักรในกระบวนการผลิต หรือคาดการณ์การซ่อมบำรุงล่วงหน้าจากข้อมูลของเครื่องจักรอย่างต่อเนื่อง ที่เรียกว่า “AI-enhanced predictive maintenance”

เทคโนโลยีที่สอง คือ การสร้างแบบจำลองกระบวนการผลิตคู่ขนานไปกับการผลิตจริง หรือ “digital twin” โดยใช้ AI วิเคราะห์และคาดการณ์ปัญหาที่อาจเกิดขึ้นในกระบวนการผลิต ผ่านการทำงานควบคู่ไปกับการเก็บข้อมูลแบบ real-time ของระบบ cloud และ IOT

เทคโนโลยีที่สาม คือ การนำ AI มาช่วยวิเคราะห์กระบวนการผลิต และคำนวณการสั่งซื้อวัตถุดิบหรือชิ้นส่วนต่าง ๆ รวมไปถึงการจำลองเหตุการณ์กรณีการปรับเพิ่ม-ลดผลิตภัณฑ์ในสายการผลิต ที่เรียกว่า “AI-enhanced supply chain management”

และเทคโนโลยีสุดท้าย คือ “human-robot collaborative” โดยให้ AI เข้ามาควบคุม และเรียนรู้ในระบบ machine learning ของเครื่องจักร หรือหุ่นยนต์อุตสาหกรรม เพื่อให้เกิดการเรียนรู้อย่างรวดเร็วในการทำงานร่วมกับมนุษย์ และลดโอกาสในการเกิดอุบัติเหตุภายในโรงงานซึ่งจากการศึกษาของ McKinsey พบว่า การนำ AI เข้ามาใช้ในกระบวนการผลิตจะช่วยเพิ่มประสิทธิภาพในการผลิตได้ 20% ลดระยะเวลาการหยุดผลิตเพื่อซ่อมบำรุงได้ 20% อีกทั้งยังสามารถลดความผิดพลาดในการจัดการระบบห่วงโซ่อุปทานได้มากถึง 50% สอดคล้องกับรายงานของ General Electric ในปี 2016 ที่พบว่า การนำ AI มาปรับใช้ควบคู่กับเทคโนโลยีข้างต้น ช่วยเพิ่มประสิทธิภาพการผลิตของโรงงานในอินเดียได้ 18% ลดระยะเวลาซ่อมบำรุงของโรงงานในมิชิแกนได้มากกว่า 20% และลดค่าใช้จ่ายในการสั่งซื้อชิ้นส่วนได้มากกว่า 80 ล้านดอลลาร์สหรัฐเลยทีเดียว

อนึ่ง แม้ว่าการนำ AI มาปรับใช้ในกระบวนการผลิตจะส่งผลดีต่อภาคธุรกิจ ทั้งในด้านการผลิต การจัดการสินค้าคงคลัง และด้านความปลอดภัย แต่เราพบว่า adoption rate ของ AI ในภาคการผลิตยังอยู่ในระดับที่ค่อนข้างต่ำในปัจจุบัน จากความกังวลในเรื่องความคุ้มทุน และปัญหาด้านบุคลากร

ทั้งนี้ จากรายงานของ PwC ปี 2018 ซึ่งสำรวจ 1,155 บริษัททั่วโลกพบว่า มีเพียง 29% เท่านั้นที่มีแผนจะนำ AI มาใช้ในกระบวนการผลิตภายในปี 2022 และมีเพียง 98 บริษัทที่มีการนำ AI มาใช้แล้วจริง ซึ่งคิดเป็นสัดส่วนเพียงราว 8% ของบริษัททั้งหมดที่ทำการสำรวจ โดยเกือบทั้งหมดเป็นบริษัทที่มีความก้าวหน้า หรือเป็นผู้คิดค้นนวัตกรรมในเทคโนโลยีดิจิทัล ขณะที่ฝั่งของผู้ประกอบการไทยเองก็มีแนวโน้มในการนำเทคโนโลยี AI มาใช้ในภาคการผลิตค่อนข้างช้าเช่นเดียวกัน ซึ่งอีไอซีมองว่ามีอุปสรรคและความท้าทายสำคัญ 3 ประการของการนำ AI มาใช้ในไทย

ประการแรก คือ ความกังวลในเรื่องระยะเวลาคืนทุนที่ล่าช้า จากข้อมูลพบว่าการปรับปรุงกระบวนการผลิตทั้งหมดเพื่อให้สามารถนำ AI มาใช้ได้อย่างสมบูรณ์ แม้จะเป็นโรงงานขนาดเล็กก็อาจต้องมีการลงทุนเริ่มต้นสูงถึงราว 10-30 ล้านบาท ในขณะที่กว่า 60% ของโรงงานอุตสาหกรรมในไทยเป็นโรงงานขนาดกลางและเล็กที่มีขนาดการลงทุนโดยเฉลี่ยต่ำกว่า 30 ล้านบาท

ดังนั้น ด้วยมูลค่าการลงทุนข้างต้นอาจส่งผลให้มีระยะเวลาคืนทุนที่ยาวนานราว 7-10 ปี

ประการที่สอง คือ ขาดความรู้ความเข้าใจด้านเทคโนโลยี และขาดบุคลากรที่มีความเชี่ยวชาญเฉพาะด้าน IT โดยเฉพาะธุรกิจหรือโรงงานประเภท SMEs ที่อาจไม่มีหน่วยงานด้านเทคโนโลยี หรือ IT ในองค์กร จึงจำเป็นต้องใช้บริการด้านนี้จากหน่วยงานภายนอกที่มีความเชี่ยวชาญเฉพาะมาให้บริการเป็นครั้งคราว หรือเป็นรายโครงการไป ซึ่งอาจส่งผลให้ไม่สามารถแก้ไขปัญหาได้ทันการเมื่อเกิดเหตุฉุกเฉิน

และ ประการสุดท้าย คือ ขาดการจัดเก็บข้อมูลอย่างเหมาะสมและเป็นระบบ เนื่องจากโรงงานอุตสาหกรรมในไทยยังพึ่งพิงแรงงานมนุษย์ในกระบวนการผลิตสูง โดยเฉพาะอย่างยิ่งในโรงงานขนาดกลางและเล็กที่ดำเนินกิจการมานาน ซึ่งส่วนใหญ่ขาดการจัดเก็บข้อมูลการทำงานของเครื่องจักรในกระบวนการผลิต ข้อมูลด้านวัตถุดิบและสินค้าคงคลัง รวมถึงไม่มีการจัดทำระบบเครือข่ายภายในองค์กร ซึ่งเป็นอุปสรรคสำคัญในการนำข้อมูลมาวิเคราะห์เพื่อใช้ประโยชน์ต่อไป

EIC มองว่าอุตสาหกรรมการผลิตขนาดใหญ่ในไทยที่จำเป็นต้องเดินสายการผลิตตลอด 24 ชั่วโมง อย่างปิโตรเคมี และเครื่องดื่ม มีโอกาสที่จะนำ AI มาประยุกต์ใช้ในกระบวนการผลิตได้ก่อนอุตสาหกรรมประเภทอื่น ๆ เพราะสามารถจัดการกับข้อจำกัดในด้านบุคลากรและการจัดเก็บข้อมูลได้

ยิ่งไปกว่านั้น องค์กรขนาดใหญ่เหล่านี้มักมีหน่วยงานด้าน IT ภายในที่มีความเชี่ยวชาญเฉพาะด้านอยู่แล้ว อีกทั้งยังมีการใช้เครื่องจักรในเกือบทั้งกระบวนการผลิต ซึ่งช่วยให้สามารถติดตั้งระบบตรวจวัดการทำงานของเครื่องจักรเพิ่มได้ไม่ยาก และเอื้อต่อการทำ digital transformation และการนำเทคโนโลยี AI อย่าง AI-enhanced predictive maintenance และ digital twin มาควบคุมการผลิตทั้งหมดของโรงงาน ซึ่งนอกจากจะช่วยลดระยะเวลาในการซ่อมบำรุง และเพิ่มชั่วโมงการผลิตแล้ว ยังช่วยให้สามารถคาดคะเนโอกาสเสียหายของเครื่องจักรหรือการรั่วซึมในกระบวนการผลิตของสารเคมีที่เป็นอันตรายได้อย่างแม่นยำอีกด้วย

อย่างไรก็ตาม สำหรับอุตสาหกรรมการผลิตอื่น ๆ โดยเฉพาะองค์กรขนาดกลางและขนาดเล็ก อาจยังต้องเผชิญกับอุปสรรคและความท้าทายข้างต้นที่ไม่อาจแก้ได้ในระยะสั้น ดังนั้น การประยุกต์ใช้เทคโนโลยี AI เฉพาะบางส่วนของกระบวนการผลิต จึงเป็นอีกหนึ่งทางเลือกที่น่าสนใจ ไม่ว่าจะเป็นการใช้บริการหน่วยงาน IT หรือ system integrator ในการจัดการข้อมูล หรือทำ digital transformation หรือแม้แต่การเช่าเครื่องจักรหรืออุปกรณ์ที่มีการติดตั้ง AI-enhanced predictive maintenance ในการซ่อมบำรุงเครื่องจักร

เช่น บริการติดตั้งอุปกรณ์ตรวจสอบในเครื่องจักรสำคัญของ HID global ซึ่งเป็นการใช้ AI-enhanced predictive maintenance เฉพาะในเครื่องจักรเครื่องนั้น หรือการให้บริการ software อย่างระบบ ERP ของ SAPs ที่สามารถเลือกใช้เฉพาะในส่วน AI-enhanced supply chain management ในการควบคุมสินค้าคงคลังได้ โดยบริการทั้ง 2 รูปแบบดังกล่าวมีจำนวนธุรกรรมและค่าบริการที่ต่ำกว่าการใช้ AI ทั้งกระบวนการผลิต

ทั้งนี้ อีไอซีมองว่าความสำเร็จในการนำเทคโนโลยี AI มาใช้ ต้องเริ่มจากการปรับทัศนคติของผู้ที่เกี่ยวข้องตั้งแต่ระดับบริหารไปจนถึงระดับปฏิบัติการให้มีความรู้ความเข้าใจและพร้อมปรับตัวต่อการเปลี่ยนแปลง รวมทั้งต้องพัฒนาการจัดเก็บข้อมูลอย่างเหมาะสม

และเป็นระบบ เพื่อเสริมศักยภาพทางธุรกิจให้สามารถแข่งขันและเติบโตได้อย่างยั่งยืนต่อไปในยุค 4.0

ดูข่าวต้นฉบับ
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...